void

Parameters:

-------------

if you want to detect vertical lines, use the following conditional statement after line 23 of the above example.

__(InputArray image, OutputArray lines, double rho, double theta, int threshold, double srn=0, double stn=0 )__**HoughLines**Parameters:

**image**– 8-bit, single-channel binary source image (use edge detectors)**lines**– Output vector of lines. Each line is represented by a two-element vector . is the distance from the coordinate origin (top-left corner of the image). is the line rotation angle in radians ( ).**rho**– Distance resolution of the accumulator in pixels.**theta**– Angle resolution of the accumulator in radians.**threshold**– Accumulator threshold parameter. Only those lines are returned that get enough votes (>threshold ).**srn**– For the multi-scale Hough transform, it is a divisor for the distance resolution`rho`. The coarse accumulator distance resolution is`rho`and the accurate accumulator resolution is`rho/srn`. If both`srn=0`and`stn=0`, the classical Hough transform is used. Otherwise, both these parameters should be positive.**stn**– For the multi-scale Hough transform, it is a divisor for the distance resolution`theta`.

#### Steps:

- Load image and convert to gray-scale.
- Apply the Hough Transform to find the lines.(HoughLines)
- Draw the detected lines.(line)
- Show the result

#### Functions:

### Example:

-------------#include "opencv2/highgui/highgui.hpp" #include "opencv2/imgproc/imgproc.hpp" #include <iostream> using namespace cv; using namespace std; int main() { Mat src = imread("building.jpg", 0); Mat dst, cdst; Canny(src, dst, 50, 200, 3); cvtColor(dst, cdst, CV_GRAY2BGR); vector<Vec2f> lines; // detect lines HoughLines(dst, lines, 1, CV_PI/180, 150, 0, 0 ); // draw lines for( size_t i = 0; i < lines.size(); i++ ) { float rho = lines[i][0], theta = lines[i][1]; Point pt1, pt2; double a = cos(theta), b = sin(theta); double x0 = a*rho, y0 = b*rho; pt1.x = cvRound(x0 + 1000*(-b)); pt1.y = cvRound(y0 + 1000*(a)); pt2.x = cvRound(x0 - 1000*(-b)); pt2.y = cvRound(y0 - 1000*(a)); line( cdst, pt1, pt2, Scalar(0,0,255), 3, CV_AA); } imshow("source", src); imshow("detected lines", cdst); waitKey(); return 0; }

-------------

#### Result:

#### Extra Stuffs:

**What if you need to select some lines on the basis of prior knowledge of range of angles?**

if you want to detect vertical lines, use the following conditional statement after line 23 of the above example.

if( theta>CV_PI/180*170 || theta<CV_PI/180*10) { Point pt1, pt2; .......... line( cdst, pt1, pt2, Scalar(0,0,255), 3, CV_AA); }if you want to detect horizontal lines, use

if( theta>CV_PI/180*80 && theta<CV_PI/180*100) { Point pt1, pt2; .......... line( cdst, pt1, pt2, Scalar(0,0,255), 3, CV_AA); }

If i know that the lines im trying to detect will be in a specific range, e.g between 80 and 110 degrees, can I limit the range that houghLines searches through?

ReplyDeleteExcellent question Borg.

DeleteI have updated the post. Please have a look.

All you need to do is restrict your angle range. i.e. choose the lines those fall in your angle range. This can be done using a conditional statement after line detection.

Hi Kanha,

DeleteHope you can teach on the specific degree. What I had understand is totally weird

?

1

2

3

4

5

if( theta>CV_PI/180*170 || theta 170 degree || means OR in C++ .. and still confusing.. please help to details out then.. appreciate on yr response

zamani

Here "theta" is in radian. So we have to convert degree to radian.

DeleteHere 170 degree = (CV_PI/180)*170 radian.

We may not get perfect horizontal lines. So we have to put some threshold. Perfect horizontal line occurs when theta = CV_PI/2 = 90 degree. So we use the threshold from 80~100 degrees to detect horizontal lines.

For vertical lines, the angle is 0 degree = 180 degree.

So we can write that if (angle<10 degree OR angle>170 degree), then it is a vertical line.

Hope this helps.

Hi Kanha,

DeleteThanks for the details up and I had tested again and yes it worked as per define above. TQSM!!

Just another question related to Hough Transform but for Probabilistic Hough Line Transform. In this function, the HT Prob

HoughLinesP(dst, lines, 1, CV_PI/180, 50, 50, 10 );

with the arguments:

◾dst: Output of the edge detector. It should be a grayscale image (although in fact it is a binary one)

◾lines: A vector that will store the parameters (x_{start}, y_{start}, x_{end}, y_{end}) of the detected lines

◾rho : The resolution of the parameter r in pixels. We use 1 pixel.

◾theta: The resolution of the parameter \theta in radians. We use 1 degree (CV_PI/180)

◾threshold: The minimum number of intersections to “detect” a line

◾minLinLength: The minimum number of points that can form a line. Lines with less than this number of points are disregarded.

◾maxLineGap: The maximum gap between two points to be considered in the same line.

Here can the rho and theta been employed again to get the selective degree? The lines now are vectors X start, Y start, X end and Y end which is different.

can I limit the range that houghLines probablistic searches through? If yes, should I declare again using x start, y start, x end and y end?

Thanks

Zamani

Hi Kanha

ReplyDeleteif replace vector lines; by vector lines; then what are define rho and theta?

Vec2f by Vec4i

DeleteThese two datatypes are defined as:

Deletetypedef Vec Vec2f;

typedef Vec Vec4i;

So, vec2f can contain two float values. Similarly, vec4i can have four integer values.

However, we need two float values to represent a line, i.e. slope and distance from origin.

Therefore, vec2f is used.

Thanks for you reply, Kanha.

ReplyDeleteIn my case, i used Vec4i and i want to detect vertical lines, but i don't know how to defined rho and theta.

This is my code

vector< Vec4i > lines; //don't space between < and Vec4i

int houghThreshold = 70;

if(imgGRAY.cols*imgGRAY.rows < 400*400)

houghThreshold = 100;

cv::HoughLinesP(imgCanny, lines, 1, CV_PI/180, houghThreshold, 10,10);

while(lines.size() > MAX_NUM_LINES)

{

lines.clear();

houghThreshold += 10;

cv::HoughLinesP(imgCanny, lines, 1, CV_PI/180, houghThreshold, 10, 10);

}

for(size_t i=0; i<lines.size(); i++)

{

Point pt1, pt2;

//defined rho and theta to detect vertical lines ???

pt1.x = lines[i][0];

pt1.y = lines[i][1];

pt2.x = lines[i][2];

pt2.y = lines[i][3];

line(outputImg, pt1, pt2, CV_RGB(0,0,0), 2);

aux.clear();

aux.push_back(pt1);

aux.push_back(pt2);

lineSegments.push_back(aux);

}

Could you help me with this?

thanks allot brother, thanks allot!! :)

ReplyDeletecan you explain about those line :

ReplyDeletept1.x = cvRound(x0 + 1000*(-b));

pt1.y = cvRound(y0 + 1000*(a));

pt2.x = cvRound(x0 - 1000*(-b));

pt2.y = cvRound(y0 - 1000*(a));

Why a and b must be multiplicated by 1000?

Very good! It was very usefull to me. Thank you

ReplyDeleteIs there any way to limit minimal length of a line?

ReplyDeleteThanks for great article

Hi Kanha, your tutorial is very helpful. I use HoughLinesP and I want to merge or average neigbour lines. Do you have any suggestion? Thanks

ReplyDeleteHi Kanha,

ReplyDeletehow can we measure the distance between two lines or how to get the desired line?

in my case i want to detect the tube and width of tube is 46 pixel, so i just want to draw line which has distance 46 between them and rest line should be neglect.

Any suggestion.

Thank you for tutorial.

dịch vụ thành lập doanh nghiệp công ty trọn gói

ReplyDeletedịch vụ thành lập doanh nghiệp công ty tại thanh xuân

dịch vụ thành lập doanh nghiệp công ty tại hà đông

dịch vụ thành lập doanh nghiệp công ty tại long biên

dịch vụ thành lập doanh nghiệp công ty tại cầu giấy

dịch vụ thành lập doanh nghiệp công ty tại bắc ninh

dịch vụ thành lập doanh nghiệp công ty tại quận 3 tphcm

dịch vụ thành lập doanh nghiệp công ty tại quận đống đa

dịch vụ thành lập doanh nghiệp công ty tại quận thủ đức

dịch vụ thành lập doanh nghiệp công ty tại huyện đông anh

dịch vụ thành lập doanh nghiệp công ty tại huyện nhà bè

dịch vụ thành lập doanh nghiệp công ty tại huyện hoài đức

dịch vụ thành lập doanh nghiệp công ty tại bình dương

dịch vụ thành lập doanh nghiệp công ty tại hưng yên

Hello there i am new in opencv as well as in image processing

ReplyDeletei want to detect the crack in biscuit so i used the haugh transform as above example so i can crack this.

Please tell me how to do this.

Here i am processing

1->take an image

2->adaptive segment

3->haugh line transform using above code.

but line is not detected.

red window displays.

what is the role of threshold here? canyou explain

ReplyDeletePython is a general-purpose interpreted, interactive, object-oriented and high-level programming language. Currently Python is the most popular Language in IT.

ReplyDeletepython training in bangalore

aws training in bangalore

artificial intelligence training in bangalore

data science training in bangalore

machine learning training in bangalore

hadoop training in bangalore

devops training in bangalore

corporate training companies

ReplyDeletecorporate training companies in mumbai

corporate training companies in pune

corporate training companies in delhi

corporate training companies in chennai

corporate training companies in hyderabad

corporate training companies in bangalore

Currently Python is the most popular Language in IT. Python adopted as a language of choice for almost all the domain in IT including Web Development, Cloud Computing (AWS, OpenStack, VMware, Google Cloud, etc.. ),Read More

ReplyDeleteThanks for sharing valuable information.

ReplyDeleteHadoop interview questions and answers

Hadoop interview questions

Hadoop interview questions and answers online

Hadoop interview questions and answers pdf

Hadoop interview questions techtutorial

You can leave all the stressful work to us so that we handle it for you and assure you of delivering excellent write my research paper online services to you all the time.

ReplyDelete

ReplyDeleteGreat Article

IEEE final year projects on machine learning

JavaScript Training in Chennai

Final Year Project Centers in Chennai

JavaScript Training in Chennai